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2.  Basic Indentation Theory

Andy Bushby
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Contact between two elastic spheres

Hertz 1880 Elastic contact only

(JKR)  Johnson, Kendall and Roberts 1971 Elastic with adhesion

Bradley 1932 van der Waals forces only

(DMT),  Derjaguin, Muller, Toporov and Yu 1975 Elastic, adhesion and vdW

These are only elastic and surface force theories;

none of them consider plastic deformation 

or time dependent deformation at the contact

J.A. Greenwood  Proc. Roy. Soc, London A453 1277 (1997)

Contact mechanics models
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Heinrich Hertz

•1857-1894

•PhD in optical properties at age of 23

•Became assistant to Helmholtz

•Major contribution to existence and properties

of electro-magnetic waves

•Unit of frequency named after him, Hz

•Died of blood poisoning at the age of 36

While working on optical properties with compound lenses he noticed that 

the glass lenses distorted at the contact between them.

This messed-up his experiments, so he thought about how the distortion

occurred, using the (then new) theory of elastic mechanics. 

Devises theory of elastic contact mechanics during the Christmas holidays at age of 23

Elastic contact mechanics: Love Hertz
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Hertzian contact mechanics - 1880

Hertz considered the elastic contact

between any 2 non-conforming bodies

R1

R2

1

2

Assumptions:

• The material is isotropic and homogenous (e.g. glass)

• Strains are small and below the elastic limit (i.e. linear elastic everywhere)

• Each solid can be considered as an elastic half space (i.e. infinitely large) 

• The surfaces are continuous and non-conforming (i.e. only touch at 1 place)

• The contact is frictionless (i.e. no friction to complicate the displacements)

Elastic contact mechanics
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The 2 bodies in contact form a contact area over which force balance is 

maintained  (i.e. the reaction forces of both bodies are in equilibrium –

resulting from their elastic properties). The contact area has radius ‘a’.

From consideration of the elastic 

displacements, w, at the contact 

Hertz calculated the approach of 

distant points in the 2 bodies as

 = 1 + 2

K.L.Johnson, ‘Contact mechanics’ Cambridge University Press, 1985

Elastic contact mechanics
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Hertz derived a series of important relations

For the total displacement 

and the radius of the contact area, a, 

where E* is the combined elastic moduli 

of the 2 materials
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R* is the relative curvature 

between the 2 surfaces 

Elastic contact mechanics
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Indentation is a special case of Hertzian mechanics where R2 = 
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Subscripts   m = material,   i = indenter

Contact depth = ½ total depth

Elastic contact mechanics



www.nanoindentationcourse.co.uk

0

0.2

0.4

0.6

0.8

1

-1.5 -1 -0.5 0 0.5 1 1.5
r

Contact radius, a

p

where F = applied force, E* and R* defined on slide 12

Pressure distribution - sphere
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Contact stresses
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Radial stress fields falling off as 1/r2

Tensile, compressive and shear components

Constraint - large hydrostatic component beneath contact

Sharper the contact – more intense the stress concentration

 plasticity or cracking 

Contact stresses

FEA simulation for von Mises stresses
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Radial stress fields falling off as 1/r2

Tensile, compressive and shear components

Constraint - large hydrostatic component beneath contact

Sharper the contact – more intense the stress concentration

 plasticity or cracking 

Contours of

shear stress

(Photo-elastic effect)

Contact stresses
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r

Contact radius, a

p

Pressure distribution for a flat punch indenter

The maximum pressure is at the edge of contact

And the pressure distribution is  𝑝 = 𝑝0 1 − 𝑟2/𝑎2 −1/2
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Pressure distribution - punch



www.nanoindentationcourse.co.uk

Contact stresses
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Elastic (Hertzian) response - reversible
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Elastic contact

mhF 

m = 1 (flat punch)

m = 2 (cone)

m = 1.5 (sphere)

m = 1.5 (paraboloid)

I.N.Sneddon Int. J. Eng. Sci. Vol 3 p47 (1965)

Sneddon, 1965

Half of elastic 

displacement
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Typical nanoindentation experiment

Example for a spherical indenter on glass

Approach to contact with surface

Elastic-plastic contact
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Typical nanoindentation experiment

Example for a spherical indenter on glass

Elastic-plastic contact



www.nanoindentationcourse.co.uk

0

50

100

150

200

250

300

350

0 200 400 600 800 1000 1200 1400

Penetration  / nm

F
o

rc
e

  /
 m

N

Elastic + plastic response

contact area increasing

F

Contact pressures are large  most materials permanently deform

Typical nanoindentation experiment

Example for a spherical indenter on glass

Elastic-plastic contact
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Typical nanoindentation experiment

Example for a spherical indenter on glass

Elastic-plastic contact
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Residual impression

= permanent deformation

Typical nanoindentation experiment

Example for a spherical indenter on glass

Elastic-plastic contact
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Unload is assumed to be purely elastic recovery

I.N.Sneddon Int. J. Eng. Sci. Vol 3 p47 (1965)
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 = 1 (flat punch)

 = 0.72 (cone)
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 = 0.75 (paraboloid)
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(from elastic recovery rate – Sneddon, 1965)

he
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Unload is assumed to be purely elastic recovery

F

hc

dF

dh
Fhhc 75.0max 

A

 ce hhh  max2

I.N.Sneddon Int. J. Eng. Sci. Vol 3 p47 (1965)

(Hertz)
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(from elastic recovery rate – Sneddon, 1965)
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Calculate material properties from unloading data
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Determine contact radius, a

and hence elastic modulus

from the elastic displacement, he

Elastic-plastic contact
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Elastic modulus

where  is a factor to account for the 

corners of the Berkovich indenter  (  1.034)

and  S = dF/dh the contact stiffness

OK for elastic-plastic materials (i.e. metals and ceramics) but not anything else!

Oliver and Pharr method

Calculate material properties from unloading data (for Berkovich indenters)

W.C. Oliver and G.M. Pharr, Journal of Materials Research  Vol. 7 p1564 (1992)

dF

dh
= S
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Elastic recovery assumed to be vertical

so that recovered impression size = contact size

Elastic recovery

F

𝑎0 =
𝑆

2𝐸𝑟
× 1 + 𝑘

𝐻

𝐸

−1

k depends on Poisson’s ratio

S is the contact stiffness

Lateral contraction depends on E/H and 

Significant for low E/H materials such as fused silica

Chudoba and Jennett, J. Phys D 41 (2008) 215407

The contact radius under load, a0

is then given by
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from hc and indenter geometry get area of contact, A

For an ideal Berkovich indenter the contact area is a simple function 

of the contact depth, hc A = 24.56 hc
2

hc

F A

Using Sneddon’s result

Oliver and Pharr method

Calculate material properties from unloading data (for Berkovich indenters)

W.C. Oliver and G.M. Pharr, Journal of Materials Research  Vol. 7 p1564 (1992)

= S

S

F
hhc

max
max 75.0
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The addition of the surface adhesive force changes the contact from asymptotic 

to perpendicular to the surface and the contact radius increases from a0 to a1

There is a finite contact radius at zero load 

And a tensile force is needed to break the contact
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Adhesive contact:  JKR

K.L.Johnson, K.Kendall, A.D.Roberts, Proc. Roy. Soc. A324, 301-313  (1971 )
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Hertz and JKR add to increase the total force and result in tensile ‘pull-off’ force

RF 
2

3
‘Pull-off’ force
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Finite contact size

at zero load

Hertz       Adhesion

K.L.Johnson, K.Kendall, A.D.Roberts, Proc. Roy. Soc. A324, 301-313  (1971 )

Adhesive contact:  JKR
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• Theory that we use is based in elastic contact

• Indentation is a special case of contact mechanics

• Hertzian elastic contact mechanics is rigorous and complete

• The stress distribution beneath a contact is complex and indentations into 

engineering materials are not purely elastic (plasticity, time dependant, etc)

• Indentation analysis is based on elastic unloading to determine contact area

• Oliver and Pharr  method most common approach for Berkovich indentation 

into elastic-plastic solids (metals and ceramics)

• Johnson – Kendal – Roberts for adhesive contact

Summary


